Involvement of heme biosynthesis in control of sterol uptake by Saccharomyces cerevisiae.

نویسندگان

  • T A Lewis
  • F R Taylor
  • L W Parks
چکیده

Wild-type Saccharomyces cerevisiae do not accumulate exogenous sterols under aerobic conditions, and a mutant allele conferring sterol auxotrophy (erg7) could be isolated only in strains with a heme deficiency. delta-Aminolevulinic acid (ALA) fed to a hem1 (ALA synthetase-) erg7 (2,3-oxidosqualene cyclase-) sterol-auxotrophic strain of S. cerevisiae inhibited sterol uptake, and growth was negatively affected when intracellular sterol was depleted. The inhibition of sterol uptake (and growth of sterol auxotrophs) by ALA was dependent on the ability to synthesize heme from ALA. A procedure was developed which allowed selection of strains which would take up exogenous sterols but had no apparent defect in heme or ergosterol biosynthesis. One of these sterol uptake control mutants possessed an allele which allowed phenotypic expression of sterol auxotrophy in a heme-competent background.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sterol uptake in Saccharomyces cerevisiae heme auxotrophic mutants is affected by ergosterol and oleate but not by palmitoleate or by sterol esterification.

The relationship between sterol uptake and heme competence in two yeast strains impaired in heme synthesis, namely, G204 and H12-6A, was analyzed. To evaluate heme availability, a heterologous 17alpha-hydroxylase cytochrome P-450 cDNA (P-450c17) was expressed in these strains, and its activity was measured in vivo. Heme deficiency in G204 led to accumulation of squalene and lethality. The heter...

متن کامل

Transcriptional regulation of the squalene synthase gene (ERG9) in the yeast Saccharomyces cerevisiae.

The ergosterol biosynthetic pathway is a specific branch of the mevalonate pathway. Since the cells requirement for sterols is greater than for isoprenoids, sterol biosynthesis must be regulated independently of isoprenoid biosynthesis. In this study we explored the transcriptional regulation of squalene synthase (ERG9) in Saccharomyces cerevisiae, the first enzyme dedicated to the synthesis of...

متن کامل

Regulation of partitioned sterol biosynthesis in Saccharomyces cerevisiae.

Using yeast strains with null mutations in structural genes which encode delta-aminolevulinic acid synthetase (HEM1), isozymes of 3-hydroxy-3-methylglutaryl coenzyme A (HMG1 and HMG2), squalene epoxidase (ERG1), and fatty acid delta 9-desaturase (OLE1), we were able to determine the effect of hemes, sterols, and unsaturated fatty acids on both sterol production and the specific activity of 3-hy...

متن کامل

The Mechanism of Chromium Biosorption by Saccharomyces Cerevisiae

The Biosorption property of S. cerevisiae for chromium uptake was investigated in an immobilized cell bioreactor. Saw dust was utilized as the solid bed in the reactor. Adsorption of S. cerevisiae on saw dust obeys a first order reaction kinetic up to 6 hours. The immobilized biomass particles are porous and exist in the new generation of biological adsorbent. Chromium biosorption was studied i...

متن کامل

A mutation in a purported regulatory gene affects control of sterol uptake in Saccharomyces cerevisiae.

Aerobically growing wild-type strains of Saccharomyces cerevisiae are unable to take exogenously supplied sterols from media. This aerobic sterol exclusion is vitiated under anaerobic conditions, in heme-deficient strains, and under some conditions of impaired sterol synthesis. Mutants which can take up sterols aerobically in heme-competent cells have been selected. One of these mutations, desi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 163 1  شماره 

صفحات  -

تاریخ انتشار 1985